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Abstract

If each sensor acts independently, then dense Wireless
Sensor Networks (WSNs) rapidly hit fundamental perfor-
mance limits associated with False Alarm Rates (FARs). In
order to be viable, WSNs must use local redundancy to man-
age the system-level FAR. Because a small amount of redun-
dancy has substantial impact, this transforms the false alarm
problem from a noise-centric problem into a Target Not of
Interest (TNI) problem. The solution to the TNI problem is
better target classification.

The most frequent, and therefore most fundamental, TNI
problem in outdoor environments is vegetation that moves
in the wind. Displacement Detection addresses this by dif-
ferentiating targets that move back and forth from targets
with non-negligible net displacement. Obtaining displace-
ment via high resolution absolute range measurements re-
quires wide bandwidth, which is expensive and consumes
too much power. Instead, we use phase information from a
far lower power and less expensive medium bandwidth Pulse
Doppler Radar to obtain profiles of relative range with re-
spect to time. We demonstrate a low complexity algorithm
for using this information to perform Displacement Detec-
tion.

Although this method may not work for much longer
ranges (e.g., kilometers) due to the larger number of moving
objects within the scene, we demonstrate that it works well in
a wide range of realistic environments at short ranges (e.g.,
10’s of meters). In addition, we analyze the FAR and the
Probability of Detection, showing that this method reduces
the FAR in most environments to about one false alarm every
3 months, even without the use of network-level redundancy,
which is still necessary for dense WSNs.
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1 Introduction

A key thesis of this paper is that elevated False Alarm
Rates (FARSs) are one of the most important under-addressed
problems in Wireless Sensor Networks (WSNs). We propose
that this, inherently context specific, thesis holds for a large
class of intrusion detection problems as well as human activ-
ity monitoring problems where depth of coverage and battery
powered mote-scale sensors are required. However, because
redundancy rapidly eliminates false alarms due to noise, the
true cause of FAR problems in a well designed system are
Targets Not of Interest (TNIs).

The main contribution of our work is to address the prob-
lem of false alarms induced by motion of background objects
such as bushes and trees that are quite common in outdoor
WSN deployment environments. We reject the motion of
these objects, which move back and forth in the same spot,
by using net target displacement as the feature for target de-
tection.

We identify Phase Unwrapping using a Pulse Doppler
Radar (PDR) as a basis for realizing Displacement Detec-
tion with low power. Phase information is used to calcu-
late relative range profiles, which are all that is required for
Displacement Detection. The alternative of using absolute
range information with a range resolution of a few centime-
ters would require that we use a radar that has a bandwidth
of a few GHz. However, state-of-the-art radars with such a
wide bandwidth consume higher power than is appropriate
for mote-scale devices. In contrast, relative range resolu-
tion only requires that the maximum frequency of the radar
exceeds that many GHz, which is feasible today with low-
power radars.

We moreover show how Displacement Detection can be
implemented locally on mote-scale devices using a low-cost,
low-power, Commercial off the Shelf (COTS) radar and val-
idate its performance through rigorous experimentation in
different deployment environments. Our algorithm achieves
arate of 1 false alarm every 84 days with a detection proba-
bility of 1, thereby making it especially appropriate for dense
or large WSN deployments.

We note that the WSN community has successfully exper-
imented with low-power PDRs before. Dutta et al [1] report
on deploying a network of PDR motes that used a simple
Neyman-Pearson binary hypothesis detector for discriminat-
ing targets from noise but not moving background objects.
The realization we report here was successfully used by the
winning team in a recent Commander‘s Challenge compe-
tition, which involved detecting intruders in a mountainous
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border region [2].

The rest of the paper is organized as follows. We set
up the TNIs problem for the context of people detection in
outdoor environments. We describe the phase unwrapping
based Displacement Detection in Section 3. Although not
central to the paper, the key concepts of Pulsed Doppler
Radar technology and the details behind the use of phase
information may be of interest; these are discussed in Ap-
pendix A.1 and Appendix B. We discuss our experimental
methodology and describe the results that validate our algo-
rithm in Section 4. We discuss implementation considera-
tions for low-power, mote-scale devices in Section 4.3 and
conclude in Section 5.

2 Problem Formulation
2.1 A Motivating Application

The context of this paper is a large, but specific, class
of applications—detecting people in relatively open spaces.
These applications are central to various military, facility
utilization, safety, and security domains. Militarily relevant
scenarios include perimeter protection [3]. Other scenarios
include customer monitoring in retail spaces, construction
site safety monitoring, activity monitoring in ship yards and
factory floors, auditing the use of civic spaces, and recogniz-
ing when visitors to wilderness parks wander into danger-
ous areas. The results of this paper are relevant to this wide
range of applications, but in order to be more concrete we
will elaborate on the perimeter protection scenario as a kind
of canonical embodiment of this class of problems.

Imagine a perimeter where it is important for security or
political reasons to detect individuals crossing the perime-
ter on foot. A natural question is, will a thin line of sensors
along the perimeter suffice or is it necessary to deploy sen-
sors deeper within the protected territory. The appropriate
depth of coverage depends on several factors, including the
accuracy of detection as well as the achievable and allowable
response time. Some choices of sensing modality require
distributed detection within a neighborhood of nodes, low
tolerance to false alarms may lead to the use of node level
redundancy, and nontrivial response times (say in the case
of human responders) would imply that sensor coverage be
deep enough to retain surveillance during the response time.

2.2 Low Power Wireless Sensor Networks

When providing depth of coverage in outdoor or other-
wise open locations, economic and operational viability usu-
ally depends on the sensors operating for long periods on bat-
tery power. In such scenarios, dense access to a power dis-
tribution network or central power generation is usually im-
practical. Furthermore, as the number of sensors increases,
changing the batteries becomes operationally burdensome.
For example, changing the batteries on a network of 100 sen-
sors once a month requires a small team of technicians to
travel around the network, changing on average 4 batteries
per day, without revealing the sensor locations to potential
intruders. For a larger network, the batteries must typically
last at least a year to be operationally relevant.

However, for representative batteries, this implies a se-
vere constraint on average power consumption. Figure 1
illustrates the tradeoff between system life and power con-
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Figure 1. System life for various sized batteries.

sumption. As technology matures, in situ energy harvest-
ing may substantially reduce the severity of this tradeoff, [4]
& [5], but there is, and will continue to be for many years,
a strong interest in WSN nodes that consume 10s of milli-
watts. Devices in this class are conventionally referred to as
mote-scale [6].

We therefore focus on the use of mote-scale radars in the
intrusion detection problem. The FAR problem is closely re-
lated to the performance limitations of mote-scale sensors:
the need to use 10s of milli-watts, on average, including sen-
sor specific computing, is the prominent cause of relevant
performance limitations, and is more constraining than ei-
ther cost or form factor.

2.3 False Alarm Rate Problems with Scaling

Experiments and demonstrations of WSNs using mote-
scale sensors for people detection have struggled with FAR
problems. The fundamental cause of this problem is that, if
each node-level alarm maps directly to a system-level alarm,
then acceptable node-level FARs tend to result in unaccept-
ably high system-level FARs. That is, if the nodes act inde-
pendently for the purpose of detection, then the system-level
FAR is much higher than the node-level FAR, and it is easy
to design a system where the node-level performance is ac-
ceptable, but the system-level performance is not.

As an arbitrary example, consider a sensor that makes
a detection decision once every second. Let Py denote the
probability of false alarm and let P; denote the probabil-
ity of detection. If for an algorithm/sensor pair Py = 107°
and P; = 0.9, then on average a node would generate a false
alarm once every 11.6 days. In most perimeter protection
scenarios, this would be a good result. However, if 3 - 104
such nodes were deployed in a single system, then, on av-
erage, one node somewhere in the system would experience
a false alarm once every 34 seconds, rendering the system
unusable, at least for most scenarios.

For mote-scale systems, this problem is exacerbated by
the relatively weak performance of the individual sensors.
Many mote-scale sensors don’t normally achieve Py = 1075,

2.4 The Power of Redundancy

In a very real sense this example is a failure to utilize one
of the key potential advantages of dense WSNs, namely re-
dundancy. Consider the case where 3 sensors can sense the
target and each sensor makes a local detection decision in-
dependent of all the other sensors. Then the system designer
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may choose to declare a system-level detection if any one of
the sensors declares a local detection, to declare a system-
level detection only if all of the sensors declare a local de-
tection, or for some in-between rule. If we denote the group-
level probability of false alarms by Py, and the group-level
probability of detection by Py ¢, then for an m-out-of-n rule:

Pra= ¥ ()t
kjm i (1)
m 8 (Dot

k=m

Equation 1 implies that the group-level decision is much
more powerful than local decisions. For example consider a
sensor with Py = 10~% and P; = 0.9. By traditional sensor
design standards this is a fairly low quality detector; at one
decision per second it averages a false alarm every 2.8 hours.
As a stand alone sensor this would be marginal for most
perimeter protection scenarios, but it is perhaps representa-
tive of many mote-scale sensors. Table 1 shows the result of
various decision criteria for this fictitious sensor. The group-

Table 1. System level effect of various m-out-of-n rules,
for P; =107% P;=0.9,and n=3.

m Pag P¢o | One Group 3- 10* Groups
I | 0999  3e-4 56 min 110 ms
2 10972 3e-8 1.1yr 19 min
3 10729 le-12 32e3 yr 1.1yr

level FAR decreases exponentially with the amount of re-
dundancy, so a very small amount of redundancy reduces the
FAR to levels where it becomes unimportant.

A system wide redundancy ratio of 3 might seem exces-
sive if the only source of redundancy were spatial redun-
dancy. However, there are many other sources of redun-
dancy. The most natural would seem to be the exploitation of
spatio-temporal patterns. So it is not unreasonable to achieve
in excess of 3 fold redundancy. For this reason great sophis-
tication in the exploitation of redundancy is usually not re-
quired. A little bit of redundancy used somewhat efficiently,
makes the classical FAR problem negligible.

2.5 The Target Not of Interest Problem

Of course, a key premise of this paper is that the FAR
problem is not quite this simple. Many WSNs exploit redun-
dancy but still struggle with FAR problems. The problem is
not that the theory is flawed, but rather with the applicability
of the theory. The argument for the power of redundancy im-
plicitly assumes that false alarms are caused by events that
are independent from one sensor to next. This is true for
noise-induced false alarms. This source of false alarms is
nearly eliminated by almost any use of redundancy. How-
ever, there is another source of false alarms that are highly
correlated across local groups of sensors.

Before we define this other source of false alarms, let
us consider the example problem of detecting Sport Utility
Vehicle (SUV) tire noise acoustically.!

IFor most mass-market non-commercial vehicles, the engine

Tires are designed to make approximately random noise
over a range of frequencies in order to maximize passen-
ger comfort. Experimentation shows that two different fea-
tures can be used to detect tire noise with some effective-
ness: 1) loudness over the appropriate frequency range and
2) the shape of the acoustic spectrum, [7, 8]. Loudness, even
over a specific frequency range, may seem like an inappro-
priately simple feature, yet it works surprisingly well most of
the time. However, its lack of specificity means that a song
bird, for example, could cause false alarms. And redundancy
would not remove this source of false alarms because there
is a real sound that is confused with the sound of a SUV.
The spectral shape feature might avoid this source of false
alarms, but its computational complexity is much higher.

This sort of trade-off between specificity of the detector
and the computational cost is nearly ubiquitous. As a result,
in severely resource constrained designs it is almost always
the case that the detection class is somewhat larger than the
class of operationally relevant targets. If the operational need
is to find all Toyota Land Cruisers, the system might actually
detect all SUVs and employ resources outside the WSN (e.g.,
a human) to decide what type of SUV was detected. We will
define TNIs as objects which are detected under the detection
model, but which are not of operational interest.

The point of this section is that proper exploitation of re-
dundancy, even modest redundancy, exploited sub-optimally,
eliminates nearly all noise-induced false alarms and that the
remaining false alarms are almost all TNIs. That is, ex-
ploitation of redundancy transforms the FAR problem from
a noise-centric problem into a TNI problem. This problem is
under-addressed in the WSN literature.

In order to avoid running overly costly detectors, we pro-
pose a multi-stage detector, where the first stage employs
only the lowest “cost” features, secondary (or tertiary) de-
tection filters based on higher cost features are invoked in-
frequently. For historical reasons, these secondary detection
filters are usually referred to as classifiers. We propose a
low-power classifier to eliminate the most prevalent source
of TNIs, in the outdoor setting, i.e., vegetation blowing in
the wind, next.

3 Problem Solution

Most mote-scale intrusion detection WSNs use motion
detectors that can sense the presence of motion but provide
minimal information about the details of the motion. Mov-
ing brush and vegetation in an outdoor environment tend to
create an intractable TNI problem for these systems. Uti-
lizing features based on net-displacement rather than motion
appears to be the best way to eliminate this source of false
alarms. However, this requires a profile of target range with
respect to time that is accurate to less than 5 cm.

Achieving 5 cm of absolute range resolution requires
about 3 GHz of bandwidth which implies an Ultra-Wide
Band (UWB) radar, and requires more power than is com-
patible with a mote-scale implementation. However, 5 cm
of relative range resolution only requires that the maximum
frequency be greater than 3 GHz, it makes no requirement on

noise is sufficiently muffled so that tire noise is a more detectable
acoustic feature of the vehicle.
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bandwidth. We use a COTS PDR [9], with about 100 MHz
of bandwidth and a center frequency of 5.8 GHz in order to
create a relative range profile for displacement detection.

Creating the relative range profile is as simple as unwrap-
ping the phase of the radar’s output. This results in two types
of relative range errors: 1) noise errors and 2) phase unwrap-
ping errors. We used a pendulum to estimate the accuracy of
the resulting relative range profile and found that the noise
error was less than 5 mm and that using the most elementary
phase unwrapping algorithm, phase errors occurred, on aver-
age, less than once every 10 s. Each phase unwrapping error
results in target range error of exactly +A/2 = 2.6cm. So
about 6 times a minute, the relative range profile experiences
a jump of +2.6cm. We were unable to determine ground
truth for a swaying bush or a walking human to this kind
of accuracy, but we believe that the resulting relative range
profiles are very accurate.

3.1 Feature Design
3.1.1 Motion Detection Outdoors

Most mote-scale people detection systems are more hum-
ble than the previous subsection might suggest; typically
these systems employ sensors such at PIRs that are opti-
mized for motion detection and offer minimal support for
features other than simple indications of motion. In some in-
door environments, motion detectors work well, because al-
most nothing moves unless a human is present. However, in
most outdoor environments, especially in more remote set-
tings, the environment may exhibit a great deal of motion
even when no humans are present.

Our experimentation strongly suggests an approximate hi-
erarchy of TNIs that affect motion detectors in remote set-
tings (from most common TNI to most difficult to classify):

1. Brush and vegetation blowing in the wind.

2. Small wildlife, such as birds and rodents, that come ar-
bitrarily close to one of the sensors.

3. Large wildlife, such as deer and pigs, that wander
through the system.

The last of these problems is quite difficult to solve. De-
signing any sensor/algorithm pair that can robustly distin-
guish a wild pig from a human, for example, is challeng-
ing, even without worrying about mote-scale resource con-
straints. Fortunately, this problem is rare enough that it may
either be safely ignored or the particular situation may allow
for some use of heavyweight (i.e., non mote-scale) devices.

The second problem can be addressed through the same
type of group-level fusion that was discussed in Section 2.4
to reduce the random sources of false alarms. A grasshopper
on the surface of one sensor may cause problems that are
nearly intractable with that sensor, but the grasshopper will
not be seen by any of the neighboring sensors, and the odds
of several sensors all being confused in a mutually consistent
way at the same time is small.

Since the first of these problems is nearly ubiquitous, it is
the most fundamental of the lot. It must be solved efficiently,
using only mote-scale resources.

3.1.2 Displacement Detection

The feature that most easily, and most reliably, distin-
guishes brush blowing in the wind from all the objects with
more plausibility as operational targets, seems to be that
brush blows back and forth with negligible net-displacement
while all of the more challenging targets of operational in-
terest move though the scene with non-trivial net displace-
ment.” As a result, we propose a family of detectors based
on measurements of net displacement.

When a bush sways in the wind, it exhibits oscillating
negative and positive motion (from the sensors perspective)
that exactly cancel out over time. In practice, errors in sens-
ing the motion cause the measurements of motion to not ex-
actly cancel out over time. This accumulation of motion
measurement errors results in the perception that a sway-
ing bush is actually engaged in a very slow random walk.
This practical consideration prevents a pure displacement de-
tector, rather the practical implementation looks for net dis-
placement to exceed what would be expected by the random
accumulation of motion measurement errors. The simplest
form of this approach is simply looking for displacement to
exceed some threshold within some specified time interval.

3.2 [Estimating the Range Profile to High Ac-
curacy

A key problem with implementing displacement detec-
tion is that it requires high precision profiles of the target
range as a function of time. There is no particular reso-
lution that is necessary for robust displacement detection:
more accuracy results in lower FAR and higher Probability
of Detection (PD). A useful approximation is that we need
about 5 cm of accuracy in order to get good results, otherwise
the accumulation of errors becomes large.
3.2.1 Ranging Radars and Absolute Range Resolu-

tion

Perhaps the most classical way of constructing a range

profile is with a ranging radar. The process is:

1. Repeatedly measure the distance to all targets within the
field of view.

2. Associate targets in one measurement, usually referred
to as a scan, with targets in other measurements, possi-
bly with the aid of a sophisticated motion model.

3. Use the sequence of associated target measurements
to construct the target’s range profile, from which dis-
placement detection can be performed.

Such a system can be made to work, but has to address
three somewhat serious issues:

1. The returns from the large amount of stationary clutter
within the field of view must be learned and mathemat-
ically removed in order to sense the smaller number of
moving targets.

2. Achieving adequate range resolution requires a lot of
bandwidth, which is expensive and consumes a lot of
power, more than what seems compatible with battery
powered operations.

2We choose to define a human that moves back and forth while
remaining in one spot as operationally uninteresting.
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3. Radio Frequency (RF) regulatory regime somewhat
strongly discriminates against this approach.

The first issue may be addressed as follows. A human
sized target walking through a vegetated area may create a
smaller radar return than the total return from all the clutter.
As a result, the target does not stand out against the back-
ground and must be found by learning the expected return
from stationary clutter and subtracting this from the instan-
taneous return. The residual reveals all of the smaller targets
that are not normally part of the environment. The body of
methods used for this process is referred to as Change Detec-
tion [10—12]. This process is more complex than the solution
presented in this paper.

The second issue, i.e., achieving adequate range resolu-
tion, is more fundamental. Let AR, denote the absolute
range resolution and A f denote the bandwidth. Then an in-
formation theory result states that

1

DRy Z 57 @
Note that this result applies to the flight path length, so target
range resolution is half this (or twice as good). Now, it is pos-
sible to buy a COTS UWB radar with sufficient bandwidth
to achieve our results. For example the PulsON radar from
Time Domain Corp., [13] achieves absolute range resolution
approaching 1 cm. * However, it appears that achieving this
resolution with a power level that is compatible with mote-
scale systems is beyond the state of the art and that mote-
scale COTS radars with 3 to 5 GHz of bandwidth will not be
available anytime soon. For example, in late 2009 the Pul-
sONs used from 2.5 to 6 W and cost several thousand dollars
each.

This issue is not fundamentally related to radiated energy
or the analog electronics. For example, the PulsON radiates
less than 1 mW of power. Rather, the problem is the amount
a computing that is required to process such large amounts of
data. A radar requires at least 4 or 5 billion arithmetic opera-
tions per second for each 1 GHz of bandwidth, and sophisti-
cated radars might require much more than that. The power
requirements of the associated signal processing make 3 to
5 GHz radars not mote-scale even if the radar power went to
Zero.

The final issue relates to the regulations that govern li-
censing of UWB radars, because these radars emit radia-
tion across a huge swath of the spectrum, including portions
of the spectrum that are licensed for the exclusive use of
organizations that paid for that right. As a result, the al-
lowed energy densities are quite low. For example, in the
United States of America (USA), UWB radars are limited to

3This result holds for a specific assumption about the Signal
to Noise Ratio (SNR). A precise statement that accounts for the
ability to trade SNR for resolution, in a process that is called super-
resolution, becomes complicated and is beyond the scope of this
paper.

4The 3 dB envelope resolution for the PulsON is about 7.5 cm,
but our experimentation shows that this radar has excellent repeata-
bility and that if the SNR is high, sophisticated processing of the
output achieves a resolution approaching 1 cm.

100 nW/MHz, [14]. At 1 GHz of bandwidth this adds up to
100 W of total power. (By comparison, the Industrial Scien-
tific and Medical (ISM) band regulations, which apply to say
wireless keyboards, allow up to 1 W, which is 10,000 times
as much total power. These low power levels map directly
into low SNRs.

3.2.2  Phase Information and Relative Range Resolu-
tion

At first glance, a non-specialist reader might be surprised
at the use of bandwidth instead of maximum frequency in the
statement of Equation 2. The role of maximum frequency is
evident in a related result. Let AR, be defined as the rela-
tive range resolution, i.e., the resolution at which changes in
range can be discerned, and let f;,, be defined as the maxi-
mum frequency, then >

1

4. max

AR, > 3)
For a narrow bandwidth system the absolute range resolution
may be very large (i.e., very poor) compared to the relative
range resolution, because the bandwidth is small compared
to the maximum frequency.

Interferometers were among the first practical applica-
tions of the distinction between Equation 3 and Equation
2, [15]. Scientists realized that they could measure surface
textures, and other features, with relative accuracies on the
order of the wavelength of light, even though they had no
way (with the technology of that era) to measure absolute
range on such a fine scale. Interferometric principles were
soon applied to acoustic systems ( [16]), radars ( [17, 18]),
and lasers [19]. More recently, they have found application
in mote-scale WSNs radios [20,21].

The basic idea behind interferometric techniques is that
change or differences in the phase of returned signal corre-
sponds to changes or differences in the path length on the
order of a fraction of wavelength. Most interferometric radar
work has focused on difference in path length between mul-
tiple transmitters or receivers. In this paper, we use the same
principle to measure small changes over time in path length
resulting from the motion of the target. This requires that we
measure these changes often enough so that the target has
moved less than half a wavelength between measurements.
But by measuring the phase often and tracking the changes
in the phase over hundreds of measurements, we can con-
struct a relative range profile with an accuracy A/8.

This alternative is surprisingly well suited for this appli-
cation, because: 1) relative range profiles are adequate for
displacement detection and 2) it is relatively easy to build a
medium bandwidth mote-scale radar with a center frequency
in the 3 to 5 GHz range.

3.2.3 Radar Platform

Medium bandwidth mote-scale Doppler radars have been
widely used in research for about 15 years. We adopted the
BumbleBee radar [9] as it is a COTS device, it provides
phase information (the Advantaca TWR-ISM-002 radar of
[1] does not), and it interfaces with existing motes.

5The footnote for Equation 2 also applies to Equation 3.
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Figure 2. The BumbleBee radar.

Shown in Figure 2, the BumbleBee has a range of 10m
with one range bin, which implies a range resolution of 10m.
Its bandwidth is less than 100 MHz, which conforms to the
FCC’s ISM regulations. Its center frequency is 5.8 GHz,
which implies a wavelength of 5.17 cm, and Equation 3 sug-
gests that we should expect relative range accuracy of about
6.5 mm. And it consumes 41 mW of power.

3.3 Algorithmic Details

The process of tracking phase changes in order to con-
struct a representation of total change from an arbitrary start-
ing point is known as Phase Unwrapping. It is presented
more formally in the appendix.
3.3.1 Basic Algorithm

If we denote the change in target range from an arbitrary
starting point at sample times ¢; by Ar;, the measured phase
by 0,,;, and the measurement error by 1;, then

¢w,i = mod (Ar,- (275/)\.)"‘!‘1]1‘4-75,275) —T. @)
We further define unwrapped phase as,
Oui = Ar; (27‘5/7\.) +N;.

Phase unwrapping is roughly the process of inverting the
lossy measurement process; specifically, it is the process of
computing the set of ¢,,;’s from the set of ¢,,;’s. Notice this
is subtly different from estimating the set Ar;, because the
result of unwrapping retains the measurement errors 1); but
removes the effect of the modulus operation in 4. Stated dif-
ferently, phase unwrapping is the process of selecting the set
of k; € Z such that

Oui = Oy +ki-wr,

so that Ar; = (A/27) (¢, — Mi)-

The unwrapping problem is only tractable if Ar(¢) has
some smoothness properties that can be exploited. Ideally,
Ar(t) might have some strong smoothness properties that
would provide great robustness to the process. But in the
absence of information about the smoothness of the relative
range profile, a reasonable algorithm is to pick the range for
the next sample that is closest to the estimate of the range
of the current sample. This is equivalent to assuming that
the phase change between samples is small. This leads to a
simple algorithm that can be captured as

¢u,i = ¢u7i—1 + mod (q)m,i - ¢m7i—1 - TE,ZTC) +7

where the sequence is seeded by 0,0 = ¢y.0.

In the absence of noise, this algorithm exactly recon-
structs the unwrapped phase if the sampling is at least at the
Nyquist rate.

3.3.2 Unwrapping Errors

There are two sources of error in the resulting range pro-
file: 1) phase noise, and 2) phase unwrapping errors.

Phase noise error is easy to understand; it is 1; for each
sample. Phase unwrapping errors are caused by a sequence
of phase noise, for example, a large positive error followed
by a large negative error, that cause a jump of £1 in the se-
quence of k;’s. This is illustrated in Figure 3.
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Figure 3. Phase noise errors and three unwrapping er-
rors.

Notice that phase noise errors have no cumulative effect
in the unwrapped phase. A positive noise spike on a given
sample will cause the phase change for that sample to be
large and positive and the phase change on the next sample to
large and negative such that the results cancel out. The phase
noise portion of the error in the unwrapped results depends
only on the first and the last sample.

However, phase unwrapping errors persist forever (or un-
til a new phase unwrapping error cancels it out), as is seen in
Figure 3.

Instead of errors accumulating like when summing a long
sequence of noise measurements, errors are corrected on the
next sample, except that every once in while when a phase
unwrapping error occurs, at which point the relative range
profile jumps by +A/2. In intuitive terms, it is as if the “er-
roneousness” of the measurement process is suppressed for
long periods of time and then realized in quantized bursts
which are always +A/2 in magnitude. This is actually quite
a useful characteristic of the relative range profiles produced
by phase unwrapping, but it is important to avoid methods
that depend on the error having a Gaussian distribution.

3.3.3 Measuring the Accuracy of the Relative Range
Profiles

We wished to test the accuracy of the range profiles pro-
duced by phase unwrapping on this hardware. In order to
do this we setup a small pendulum shown in Figure 4. Be-
cause the pendulum produces well understood motion pro-
files, with only a few unknown parameters (that define the
starting position and the drag coefficient), it allows us to
measure both the phase noise induced errors and the rate
at which phase unwrapping error occurred. However, as
pointed out in the last section, only the rate of phase un-
wrapping errors affects displacement detection performance.

We found that the phase noise portion of the relative range
profile error was about 5 mm and that phase unwrapping er-
rors occurred about once every 10 to 15 seconds, on average,
depending on environmental noise levels. If the likelihood
of positive errors is the same as the likelihood of negative
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Figure 4. The setup used to measure the accuracy of the
relative range profiles produced by phase unwrapping
the output of the BumbleBee.

Table 2. Extrapolated growth of errors.

A\t Error
10s 2.6 cm
1 min 6.3 cm
10 min | 20 cm
1 hr 49 cm
4 hr 98 cm
1 day 24 m

errors then the accumulation of errors would grow propor-
tional to /At for large Ar. This asymptotic result is shown
in Table 2.

3.3.4 Caveats

These results show that our relative range profiles are re-
markably accurate for mote-scale sensors. In Section 4.1 we
carefully measure the accumulation of phase unwrapping er-
rors in operational environments. The results of Section 4.1
are not strictly comparable with Table 2, because in Sec-
tion 4.1 we are concerned with the one in 10 thousand or one
in a million worst accumulations of error, rather than the av-
erage accumulation of error. In addition, we discovered that
the complexity of moving bushes caused more errors than
the well behaved motion of the pendulum.

Finally, in some settings, we observed narrow-band in-
terference, from unknown sources, that caused substantial
phase drift, even in the absence of phase unwrapping errors.
This problem only manifests itself in very low return envi-
ronments (i.e., those devoid of any moving reflectors); the
presences of a real return swamps the effects of very weak
interferers. As a result, this problem can be detected and
avoided in software; if the return is much smaller than the re-
turn from a human, phase-unwrapping to decide if you have
an intruder may perform poorly.

4 Experimental Results

In the first part of this section, we experimentally measure
the quality of phase-based net displacement measurements in
realistic outdoor environments. In order to validate the FAR
for the associated Displacement Detector, it is necessary to
estimate the probability distribution of the net displacement
both for environments with and without an intruder. In par-
ticular, we are interested in frequency or severity of statisti-
cally unlikely events; the analogy is estimating the severity
of the 50 year flood or the 500 year flood so that we know
how high to build the levees. Specifically we need to esti-
mate the expected worst case accumulation of phase errors
over any 3 second window in a week or a year.

The second part of this section presents implementation
details for implementing the detector on an actual mote.

4.1 False Alarm Rate Validation

To estimate the FAR we performed long running data
collection experiments in a variety of environmental set-
tings with different vegetation, wind and background clutter
conditions. This includes data collected in the presence of
bushes (small and large), trees, on paved surfaces, in public
parking garages, in office environments with other wireless
interferers, in adverse weather such as during snowfall and
light rain, to but name a few. We also collected long running
traces (sometimes for days or weeks), using a video camera
to verify that there were no unexpected intruders during the
data collection.

In order to better understand the PD we also collected
100’s of data sets with a human walking at carefully mea-
sured distances.

In this subsection, we focus our results to the analysis of
data collected in four different environments: 1) an empty,
mowed open field with no moving background clutter, 2) in
a public parking garage with stationary cars parked nearby,
3) near a group of small bushes under lightly windy condi-
tions, and 4) near a group of tall trees under highly windy
conditions.

4.1.1 Comparing Amplitude with Phase

Figure 5 shows the radar output for the four environments
described above over 30 minute periods. It is common to
talk about noise as the random (or perhaps nearly random)
measurement error, clutter as the return the environment, and
signal as the return from targets. At times when talking about
signal processing, the term signal is also used to mean the
output of the radar, which would be the sum of all three of
these “signal-components”, but in this section we will refer
to signal only as the return from targets. The key point is that
none of these graphs contain any signal, they are pure clutter.

The other key point is that even under light wind condi-
tions or occasional wind gusts, moving background objects
such as bushes or trees can result in clutter levels that are
comparable to, or actually exceed, the expected signal lev-
els.

Figure 6 shows the variation of the amplitude and the un-
wrapped phase as a function of target range. The graph on
the top shows how the amplitude of the radar return changes
as a target moves from 9 m to 2 m. As expected, the am-
plitude of the return is a function of the target size (or more
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Figure 5. The amplitude of the radar output over over 30 minute periods.

precisely, its Radar Cross Section (RCS)) and the distance
from the sensor. In Figure 6, the red line shows the change
in the unwrapped phase measurement for a 1 m change in
the target’s location. The fact that it is nearly constant at 1 m
indicates good performance. The blue line shows the relative
range profile as a function of actual range.
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unwrapping errors over an arbitrary short window (like a
3 second window) might be Gaussian. Even over a 3 sec-
ond window, there are about about one thousand independent
noise events that contribute directly to potential unwrapping
errors, so it seems that the Central Limit Theorem might ap-
ply. However, there might be an extensive network of cor-
relations between phase measurements from a bush swaying
in the wind, and short of experimental validation it is hard to
be sure that the distribution should be Gaussian.

Figure 7 shows the cumulative distribution function, on a
semilog scale, of the net phase change (translated into real
distance units), over a 3 second window for the clutter (i.e.,
no target) cases shown in Figure 5. A quadratic fit (on a semi-
log scale) fits the data particularly well, so we feel somewhat
confident in extrapolating with a Gaussian distribution. We
also performed a smaller number of much longer data col-
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Figure 6. Amplitude and unwrapped phase measure-
ments for the same target walking towards the radar. The
flatness of the red line indicates that the measured dis-
placement is independent of target range.

There are two interesting features of the unwrapped
phase. First, the accuracy of the unwrapped phase seems
to only be weakly affected by the signal level. Secondly, for
very low SNRs, e.g., in the vicinity of 9 m range, the data still
produces good relative range profiles. In fact, even in the ab-
sence of TNIs, when the amplitude based detection performs
the best, the phase-based indications of motion work at lower
SNRs than the amplitude based indications of motion.

4.1.2 Modeling the Unwrapped Phase Distribution

In order to estimate the height of the 500 year flood it is
not usually practical to collect 500 years of data. Rather, the
normal approach to this problem is to collect a large amount
of data, model the probability distribution, and extrapolate
into the tail of the probability distribution.

Estimating and extrapolating a probability distribution
carries the risk that you use the wrong model for the prob-
ability distribution, but there is really no alternative to esti-
mate very rare events. In order to estimate FARs that are less
than about once a week, we are forced to use this method.
We expect that the distribution of the sum of all the phase

lections to further validate this model.
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Figure 7. The cumulative probability distribution for un-
wrapped phase over 3 second windows for clutter (i.e.,
non-target) data shown in in Figure 5.

4.1.3 False Alarm Rate Results

This extrapolation indicates that the 1 week worst case
event is a combination of noise that results in enough phase
unwrapping errors to cause 1.08 m of error accumulation
over a 3 second window. This is a shockingly bad event
when you consider that the results in Section 3.3.3 suggest
on average a 3 second window probably doesn’t even have
a single unwrapping error, but every once in a while really
bad things happen. However, this is still a very good result
because it suggests that the detection threshold can be as low
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as 1.08 m, which will yield high PD, is sufficient to achieve
a very good FAR.

Interestingly, the best case for the unwrapped phase
model is actually the one for which the clutter amplitude is
the highest; this corresponds to the highest Clutter to Noise
Ratio (CNR). In the most “benign” environment, i.e., where
there is no moving object, the CNR is very low and hence
there are a lot of unwrapping errors.

This worst case could be identified and alleviated by using
a hybrid algorithm, where phase unwrapping is performed
only when the amplitude of the radar output exceeds a mini-
mum level. This hybrid algorithm yields much better perfor-
mance, but in order to make the analysis of the performance
more reliable we will only analyze the pure phase-based al-
gorithm.

4.2 Overall Performance Evaluation
4.2.1 Probability of Detection

In order to measure the PD we had a human walk through
the scene several hundred times, so that the Closest Point of
Approach (CPA) was 7 m from the radar. Figure 8 shows
the cumulative distribution of the cumulative phase change
over the same 3 second integration windows. The blue curve
shows the distribution when walking directly (radially) to-
wards the sensor sensor stopping at a range of 7 m and the
red curve shows the distribution when the target walks past
the sensor (orthogonally) in a straight line such that the CPA
is at 7 m. Notice that the PD is essentially 1 up to a FAR of
1 every 84 days, and that it is 0.97 for 1 false alarm per year.
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Figure 8. The cumulative probability distribution for un-
wrapped phase over a 3 second window for a human with
a CPA of 7Tm.

In many practical deployments where more than one sen-
sor is expected to detect a target , much lower node level
PDs would yield very high network-level PD. In this case
it would be reasonable to raise the threshold to obtain even
lower FARs.

4.2.2  Amplitude Based Detection

We used the classical amplitude based M-out-of-N de-
tection algorithm which has been extensively used in the-
ory [22] and in practice [23,24] for intrusion detection using

radar as well as other sensors such as PIR and magnetome-
ter. We used data from several hundred runs to calculate the
amplitude returns from the radar for a human target at var-
ious distances. Based on this distribution, we carefully se-
lected the M-out-of-N parameters to optimize detection per-
formance with respect to both probability of detection and
false alarms.

From Figure 5, we observe that the noise amplitude and
hence the SNR for a real target can vary significantly de-
pending on the environment. We now compare the detec-
tion performance of Phase Unwrapping based Displacement
Detection with the classical M-out-of-N amplitude based de-
tector. Figure 9 shows the probability of detection and the
corresponding rate of false alarms under various settings.
4.2.3 Overall Comparison

It should be noted that the amplitude based detector has
extremely small FAR in the parking garage and in the empty
field where the background clutter is stationary. However, as
seen from Figure 9, for a detection range of 7 m and a de-
tection probability of 0.5, the amplitude based detector pro-
duces about 1 false alarm per minute under light wind condi-
tions, which degrades to 1 false alarm every 9 seconds when
placed near trees blowing in strong winds.
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Figure 9. PD vs FAR for Displacement and Amplitude
Detectors for different detection range and environment
settings. The X-axis is shown in terms of false alarm in-
terval for easier understanding. The amplitude detector
is omitted for the garage and the empty field, because in
these environments it has negligible FAR.

By contrast, the Displacement Detection algorithm, for a
7 m walk by, produces 1 false alarm every 84 days with a
detection probability of essentially 1 in the worst case. And
it achieves 1 false alarm per year with a detection probabil-
ity of 97%. Moreover, this performance is achieved without
compensating for the phase drift in low CNR environments.

4.3 Mote Implementation

The BumbleBee radar produces two outputs that form
the real and imaginary parts of the complex radar returns.
In order to calculate the unwrapped phase, we first need
to calculate the “wrapped” phase for each complex sam-
ple. If we denote the complex data samples as C, then
O = tan1(3(Cy)/R(Cr)). The arc-tangent function is not
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easy to implement on a mote. In this section, we describe
two implementation options for resource constrained motes.
4.3.1 Phase Lookup Table

Mote platforms are typically constrained in the amount
of RAM available and the amount of processing that can be
performed per sample. However, motes typically have am-
ple program memory where lookup tables can be stored by
declaring them at compile time. We used this approach to
implement a lookup table for tan~.

In theory, S(Cy)/R(Cy) can span the entire range of real
numbers, however using basic trigonometric principles, we
can restrict our lookup table to the range (0,1). We cre-
ate a table of size N by computing tan~!(x) offline for
x={0/N,1/N,2/N,...,N/N}. Then during phase unwrap-
ping, we can calculate the wrapped phase by looking up the
ratio of some combination of 3(Cy) and R(Cy) that lies in
the range [0, 1]. For example if 3(Cy) > 0, R(C;) > 0, and
3(Ck) > R(Cy), we use the property that

tan” ' (x) =n/2 —tan' (1/x)

to lookup R(Cy)/3(Cy)) instead.
4.3.2  Calculating the Number of Rotations

In the phase unwrapping algorithm described above, we
calculate the unwrapped phase for each sample. However,
for Displacement Detection, we only need to know whether
the phase difference in a window of time exceeds some
threshold. Thus, although the physical understanding of the
algorithm is that it computes the phase, unwraps the phase,
and then compares the change in phase to a threshold, if all
we care about is the final answer, i.e., whether the change in
phase exceeds a threshold, then the computation of the phase
is an intermediate result that may or may not be necessary. In
this case, it is possible to compute the final answer without
ever computing the phase. The approach is to estimate the
cumulative number of phase wrappings or rotations (which
can be easily translated into phase by multiplying by 2m).
For T>>1 rotation, this can be approximated using integer
operations as follows:

Rot(k) = Rot(k—1)+1 if S(Cx)*R(Ci—1) > 3(Cr—1)*R(Cr)
&& 3(Ck)>0 && S(Ck,1)<0

Rot(k) = Rot(k—1)—1if 3(C)*R(Cr—1) < 3(Cr—1) *R(Cr)
&& 3(C) <0 && 3(Cry) >0

Rot(k) = Rot(k—1) otherwise

Calculating the cumulative number of rotations in this
manner requires only two integer multiplications and a few
comparison operations.

4.3.3 Converting Phase/Rotations to Real Distance

The unwrapped phase or number of rotations is directly
correlated to the actual physical distance traversed by the
moving target in the radial direction. This conversion is use-
ful while setting thresholds which are based on target mo-
tion. Since the BumbleBee radar operates at a 5.8 GHz center
frequency, the wavelength () of the radar is 5.17 cm, which
corresponds to two phase rotations or 47 radians. Thus, we

can calculate the radial distance from the unwrapped phase
or cumulative rotations as

A A

Ark = ([)k i Rot(k) 5

Thus, one phase rotation corresponds to a physical radial

distance of 2.58 cm. From the analysis and experimental

results in Section 4, we find that in practice, the threshold for

Displacement Detection is greater than 1 m. This threshold is

thus > 1 rotation, which makes the accuracy of the rotation
approximation algorithm acceptable.

4.3.4 Calculating Cumulative Phase Change

We declare a Displacement Detection if the cumulative
phase change over an integration time window exceeds some
threshold. To calculate this change, we need to compute the
running minimum and maximum of a circular buffer of the
size of the integration window.

We use a classical heap-based algorithm to compute the
minimum and maximum. We use the trick of having two in-
dex pointers, one from the heap order to the circular buffer
order and a reverse index pointing from the circular buffer
order to the heap order. Using this bi-indexed structure, we
only need O(log(N)) time to update the data structure upon
replacing the oldest entry with the new one. Specifically,
we require (logo(N) - 1) swaps in each update. For a win-
dow size of 3 seconds at 341Hz, this translates to roughly 10
swaps per sample on average, which can be easily accom-
plished on a mote.

5 Conclusions and Future Work

In this paper, we showed that phase information from
medium bandwidth mote-scale radars can produce relative
range profiles with relative accuracy that are as good as
the range profiles produced from much higher power UWB
radars. We further showed that a very simple algorithm can
utilize this information to perform Displacement Detection,
which effectively eliminates false alarms caused by vegeta-
tion blowing in the wind.

We collected long data samples in a variety of environ-
ments and constructed probability models from this data.
Extrapolation showed that our simplest Displacement Detec-
tion algorithm could reduce the component of the FAR due
to moving vegetation to about once every three months in
the most challenging environments. In fact, the extrapola-
tion suggests that the component of the FAR due to moving
vegetation would be below once per year in most environ-
ments; but more data is probably required to fully support
this claim.

The phase unwrapping and Displacement Detection algo-
rithms described in this paper can be very low power. We
are currently using a 40 mW COTS radar, but future gen-
erations of the hardware could lower the radar power by an
order of magnitude. More critically, we are able to imple-
ment the signal processing software in less than 5 mW on a
COTS mote. Finally we have implemented a version of this
Displacement Detection algorithm on a low-power FPGA in
less than 100 uW.

The relative range profiles can also be used for many ap-
plications other than Displacement Detection. Profiles from
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multiple radars can be fused to achieve high precision in-
network target tracking. The relative range profiles can also
be used to estimate velocity. Tracking the phase of the return
is also useful in recognizing subtle patterns of target motion
and has applications in monitoring activity levels, analyzing
the motion of rotating machinery, etc.

In addition, the complex output of the radar contains
other fine scale motion information not fully represented in
the relative range profile that offers the potential to solve
other TNIs problems. Examples include distinguishing be-
tween reptiles, bipeds, and quadrupeds. Such approaches are
closely related to MicroDoppler analysis, [25].

We found that instrumenting ground truth for data col-
lection was an invaluable tool while analyzing data col-
lected across different times and places. We augmented our
data collection software with camera for capturing details of
background and target motion and weather sensors. Both the
data and the software library and hardware design tools used
in the data collection are available for sharing with the re-
search community.

6 References
[1] P. Dutta, A. Arora, and S. Bibyk. Towards radar-
enabled sensor networks. In Proceedings of the 5th

International Conference on Information Processing in
Sensor Networks (IPSN), pages 467-474, 2006.

[2] AFRL. 2009 commander’s challenge. http://www.
wpafb.af.mil/news/story.asp?id=123196732

[3] T. Heetal. Vigilnet: An integrated sensor network sys-
tem for engery-efficent surveillance. ACM Transaction
of Sensor Networks (TOSN), 2(1):1-38, Febuary 2006.

[4] K. Lin et al. Heliomote: enabling long-lived sensor
networks through solar energy harvesting. In SenSys
’05: Proceedings of the 3rd international conference
on Embedded networked sensor systems, pages 309—
309. ACM, 2005.

[5] P. Dutta et al. Trio: enabling sustainable and scalable
outdoor wireless sensor network deployments. In /PSN
’06: Proceedings of the 5th international conference
on Information processing in sensor networks, pages

407-415. ACM, 2006.

[6] J. Yick, B. Mukherjee, and D. Ghosal. Wireless sen-
sor network survey. Computer Networks, 52(12):2292—
2330, 2008.

[7] B. Flanagan and K. W. Parker. Robust distributed de-
tection using low power acoustic sensors. Procedings
of SPIE, 2005.

[8] A. Quanch and K. Lo. Automatic target detection us-
ing a ground based passive acoustic sensor. Conference
on Information, Decision and Control, pages 187-192,
1999.

[9] The Samraksh Company. BumbleBee Mote-Scale
Pulsed Doppler Radar. http://www.samraksh.com/
products.htm

[10] J. Cihlar, T. J. Pultz, and A. L. Gray. Change detection
with synthetic aperture radar. International Journal of

Remote Sensing, 13(3):401-414, February 1992.

[11] R. G. White. Change detection in sar imagery. In-
ternational Journal of Remote Sensing, 12(1):229-260,
February 1991.

[12] L. M. Wells and A. W. Doerry. Synthetic aperture radar:
Not just a sensor of last resort. Proceedings of SPIE.

[13] Time Domain. Pulson220 datasheet. http://www.
timedomain.com/products/P220aRD.pdf

[14] Fcc 02-48.  http://hraunfoss.fcc.gov/edocs_
public/attachmatch/FCC-02-48A1.pdf

[15] G. S. Monk. An adaptation of the interferometer for
hyperfine structure. Review of Scientific Instruments,
4(10):527-528, October 1933.

[16] C.J. Hubbard and I. F. Zartman. A fixed path acoustic
interferometer for the study of matter. Review of Scien-
tif Interments.

[17] L. R. Hafstad and M. A. Tuve. An echo interference
method for the study of radio wave paths. Proceedings
of the IRE, 17(10):1786-1792, October 1929.

[18] Radar interferometry. IEEE RADAR ’08, May 2008.

[19] G. Schultze B. Koch H.D. Vom Stein, P. Rateau. New
laser interferometry methods of measuring the velocity
of high-speed model missiles. Radio and Electronic
Engineer, 40(1):45-48, July 1970.

[20] M. Mardti et al. Radio interferometric geolocation. In
SenSys '05: Proceedings of the 3rd international con-
ference on Embedded networked sensor systems, pages
1-12. ACM, 2005.

[21] I. Amundson, J. Sallais, X. Koutsoukos, and
A. Ledeczi. Radio interferometric angle of arrival es-
timation. In 7th European Conference on Wireless
Sensor Networks, Coimbra, Portugal, 02/2010 2010.
Springer, Springer.

[22] J Toomay and P Hannen. Radar Principles for the Non-
Specialist. SciTech Publishing, 3rd ed, 2004.

[23] L.Gu et al. Lightweight detection and classification for
wireless sensor networks in realistic environments. In
SenSys ’05: Proceedings of the 3rd international con-
ference on Embedded networked sensor systems, pages
205-217, New York, NY, USA, 2005. ACM.

[24] A. Aroraetal. A line in the sand: A wireless sensor net-
work for target detection, classification, and tracking.
Computer Networks, Special Issue on Military Commu-
nications Systems and Technologies, 46(5):605-634,
July 2004.

[25] M. G. Anderson. Design of multiple frequency con-
tinuous wave radar hardware and micro-doppler based
detection and classification algorithms. 2008.

[26] K. J. Hintz. Snr improvements in niitek ground-
penetrating radar. Detection and Remediation
Technologies for Mines and Minelike Targets IX,
5415(1):399-408, 2004.



Under Submission - Please Do Not Distribute

APPENDIX

A Using Radar Phase Information
A.1 Pulsed Doppler Radars

In this section, we briefly overview various types of
Doppler Radars, and describe elements of the PDR we used
that are suitable for fine-grain relative resolution.

A.l.1 Continuous versus Pulsed Wave

The difference between traditional Doppler Radars and a
PDR is illustrated by considering a Continuous Wave (CW)
radar. CW radar continuously transmits a known stable
frequency while listening to echoes from the environment.
It then removes the portion of the return that matches the
transmitting frequency, typically by modulation of the return
against the transmitted signal and applying a DC-rejection
filter. The residual is the portions of the return that have
some frequency shift caused by motion of the target.

From the perspective of mote scale WSNs, there are sev-
eral problems with CW radars: the two that seem most
important are that there are no range gates (which implies
that returns from certain distances cannot be controllably re-
jected) and that the transmitter and receiver are on all the
time. These problems can be alleviated with the PDR.

Broadly speaking, there are two types of PDRs. The first
transmits pulses and computes the frequency shift between
the return and the transmitted signal. This type of PDR is
like using a CW radar that is turned on and off in order to
create pulses. The key problem with this style of PDR is that
narrow pulses yield limited frequency resolution.

The second type of PDR is more popular: it computes
the change in the return between pulses in order to estimate
the component of the return which is associated with moving
targets. This type of PDR requires that the returns be coher-
ent between pulses. That is, an exactly identical environment
needs to produce the same result from one pulse to the next.
Coherence also implies that the SNR can be improved by
integrating over successive returns; this is useful when the
signal is buried in the noise (SNR < 0, which is often the
case when dealing with soft targets or small targets, such
as humans, especially when the radars are deployed close
to the ground) and noise is not coherent (which is typically
the case). Nevertheless, real electronic systems cannot main-
tain perfect coherence indefinitely and the limit to which co-
herence can be maintained establishes a lower bound on the
Doppler frequency which can be estimated. We describe next
the COTS hardware we used that that achieves coherence
over 2 or 3 seconds.

A.2 Prototype PDR Mechanism

Although the class of PDR is slightly broader than is pre-
sented here, examining a prototypical implementation of the
second type helps clarify the use of phase information. Con-
sider a radar that transmits a series of short pulses of the type
shown in Figure 10(a). The correlation of this pulse with
itself is shown in Figure 10(b). The key feature of the sys-
tem response of this radar is that the response is periodic as a
function of differences in flight-path length with period equal
to the wavelength of the carrier frequency.
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Figure 10. A prototypical pulse for a PDR (a) and its
autocorrelation (b).
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(We note that correlating the return with a copy of itself is
not the only way to estimate the return from a PDR. For ex-
ample, a high-end system could utilize a non-linear Impulse
Response (IR) inversion technique [26], but at the time of
writing this would require 2 or 3 orders of magnitude more
computational power than is typically available on a mote.
Other systems may employ methods for truncating correla-
tion response in order to produce sharper range gates. This
periodic system response feature is nearly universal for these
PDRs as well.)
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Figure 11. Output response for a “‘complex output’ PDR.

Now, consider a refinement of the PDR that lets it corre-
late the return with two different reference signals 90° out
of phase with respect to each other, thus producing two out-
puts, one called the in-phase signal and the other called the
quadrature signal (often denoted I & Q). The resulting out-
puts when using the signal shown in Figure 10 are shown in
Figure 11. These two outputs are commonly combined to
form one complex sample. In cartesian terms, the I value
is the real part and the Q value is the imaginary part; one
may also represent the sample in terms of its amplitude (aka
absolute value/modulus) and phase (aka argument/angle).

It is common to call this type of radar coherent, but within
the context of this paper, the overloading of the term causes
confusion so we will adopt the descriptive, but non-standard,
terminology complex-output radar.

Of course, because of the correspondence between flight
delay and the range to the target, the complex output of the
radar is a deterministic function of its range to the target; this
is shown in Figure 12.

B Phase Information
In this section, we first motivate why amplitude informa-
tion from the complex output PDR described above is insuf-
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Figure 12. The display of Figure 11 as a complex real
valued function.

ficient for fine-grain range information. We then explain why
phase information does instead suffice, at least in a relative
if not absolute sense of ranging, and describe a basic algo-
rithm for “unwrapping the phase to reconstruct the relative
motion of the target. Finally, we discuss how well the basic
algorithm tolerates errors due to noisy estimates of phases,
and how to further improve the unwrapping when additional
information (such as a motion model) is available.
B.1 Amplitude vs. Phase of Complex Output
Notice from Figure 12 that the amplitude of the complex
output provides only coarse-scale range information. Ampli-
tude can differentiate whether a target is within the range bin
and the range bin is on the order of the pulse width. In many
operational scenarios, the target Radar Cross Section (RCS)
is not known precisely, which further limits the usefulness of
the amplitude information for estimating range.
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Figure 13. Phase (expressed in units of rotations) as a

function of the range to the target(a) and the likelihood
function for the data in (a) for an SNR of 3dB(b).

By way of contrast, the phase of the output significantly

limits the likely target locations within a range bin to only a
small subset of the range bin as a whole. Continuing the run-
ning example, Figure 13(a) shows the phase of the output as
a function of range. For an arbitrary phase measurement, in-
dicated by the red line in the figure, the target could be at any
one of several locations, each separated by an integer num-
ber of wavelengths, but could not be in between locations.
More specifically, for this phase measurement, Figure 13(b)
shows the likelihood function for an SNR of 3 dB.

Notice that the phase measurement alone tells us with
high likelihood that the target producing a return with this
phase measurement is at one of roughly 20 spots within the
range bin. As the SNR increases the likelihood spikes nar-
row and become sharper. Figure 13(b) uses an atypically
low SNR in order to make the graph more understandable;
for more typical SNRs, e.g., 6 dB or 10 dB, a single phase
measurement tells us with very high probability that the tar-
get is confined to a very small percentage of the range bin,
but that region is divided into 20 nearly equal sized ranges
spread uniformly throughout the range bin.

By way of analogy, each phase measurement tells us that
the target is somewhere on the teeth of a comb, where the
width of the teeth is a function of SNR. As the target moves,
the “comb” moves with it. This means by observing the
phase over time we can accurately reconstruct the relative
motion of the target to the accuracy of the width of the teeth
of the comb.
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Figure 14. The evolutions of the likelihood function
within a range bin as a target passes through the field of
view. The red lines corresponds to maximum likelihood
and the blue region to near-zero likelihoods.

Figure 14 shows the evolution of the likelihood function
as a target passes through the field of view of the complex
output radar. We cannot tell which of these (roughly 20)
plausible trajectories correspond to the actual target trajec-
tory. But since all of the trajectories have nearly the same
relative motion, we can know the target’s relative motion to
an accuracy that is a fraction of the wavelength, even when
the range bin is 10 to 100 times larger.

In sum, we claim that with phase measurements, it is pos-
sible to obtain locally precise but globally ambiguous range
information.

B.2 Phase Unwrapping

The basic computational task in phase unwrapping is to
reconstruct, from a sampling of the phase of the PDR output,
the relative trajectories, which are easily seen by the human
eye in Figure 14. At a conceptual level, it suffices for this
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task to measure the differences between successive phase
measurements and to accumulate these pair-wise changes.

In realizing phase unwrapping, we have to deal with dis-
continuities that occur in the measured phase, see Figure 13.
These discontinuities arise from a discontinuity in the phase
function. To better appreciate this problem, it is helpful to
realize that our interest in the phase is essentially to measure
the amount of rotation that has occurred from an arbitrary
starting point (see Figure 12). The fundamental problem is
that one could traverse between any two points in the com-
plex plane in a clockwise direction or in a counter-clockwise
direction. The clockwise path will correspond to a positive
total rotation and the counter-clockwise path will correspond
to a negative total rotation. But these paths would differ by
exactly 2m.

In complex analysis, the typical function that maps a com-
plex value to its phase is shown in Figure 15. The cut is along
the negative real axis; this choice of cut is arbitrary, but a cut
is always required.

Measured Rotation
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Figure 15. The standard cut in the phase function.
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Phase unwrapping is the process of removing the disconti-
nuities caused by the cut; this involves adding or subtracting
an integer number of rotations to each phase measurement.
In essence, it is the well-known process of constructing a
trajectory on the Riemann surface shown in 16.
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Figure 16. The Riemann surface that is the extension of
the phase function shown in Figure 15.

B.3 Tracking using Phase Unwrapping

The basic phase unwrapping algorithm implicitly exploits
a random walk style motion model, which assumes that the
next location is close to the old location. For targets with
significant momentum, it would be better to utilize a more
traditional motion model.

In this case, phase unwrapping can be formulated as a
problem of phase tracking. At each iteration, the history of
the unwrapped phase is applied to a motion model to predict
the next unwrapped phase value. This prediction is used to
select the unwrapped phase that is closest to the predicted
value and corresponds to the measured wrapped phase.

For instance, when applying phase tracking to track a 1-
dimensional pendulum in this manner, we use a quadratic
motion model. We perform a least squares fit of a cubic poly-
nomial to the last (say) 30 unwrapped phase values and ex-
trapolate one sample into the future in order to estimate the
next unwrapped phase value and use this prediction to select
which unwrapped phase value to use for the next point. This
process is depicted in Figure 17.
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Figure 17. An example execution of partial phase track-
ing. The blue points are the unwrapped phase, the
green line is the estimated track, and the red line is the
quadratic motion model that fits the last 40 points.

Because this motion model fits the mechanics of the tar-
get, it reduces the phase unwrapping error to below the level
at which we could experimentally evaluate it.



